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1 Continuous Dependence of ODEs on Initial Data and Clas-
sifications of PDEs

1.1 Continuous dependence of ODEs on initial data

Last time, we were discussing solving ODEs ofthe form{
u′ = F (t, u)

u(0) = u0.

We showed the following last time.

Theorem 1.1. If F is locally Lipschitz, there exists a unique solution to the ODE.

Today, we will talk more about continuous dependence of the solution on the initial
data. So if we have v′ = F (t, v) with v(0) = v0, we want to say that if v(0) is close to u(0),
then v should be close to u.

Theorem 1.2. Suppose that the solution u exists on [0, T ]. Then there exists ε > 0 such
that if |v0 − u0| < ε, then v exists on [0, T ] and

‖u− v‖C ≤ c|u0 − v0|.

That is, the map u0 7→ u|[0,T ] is locally Lipschitz.

Proof. We compute

d

dt
|u− v|2 = 2(u− v) · (u− v)t

= 2(u− v) · (F (u)− F (v))

If F is Lipschitz,

≤ 2L|u− v|2.

So if f(t) = |u− t|2, then f ′(t) ≤ 2Lf(t) with f(0) = |u0− v0|2. We claim that this implies
that f(t) ≤ f(0)e2Lt. This is called Grönwall’s inequality.
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Lemma 1.1 (Grönwall’s inequality1). If f ′(t) ≤ 2Lf(t), then f(t) ≤ f(0)e2Lt.

Proof. Let g(t) = e−2Ltf(t). It suffices to show that g is nonincreasing. We have g′(t) =
e−2Ltf ′(t)− 2Le−2Ltf(t) ≤ 0.

The proof is finished except for:

(a) If F is not globally Lipschitz.

(b) We do not know that v exists up to time T .

Suppose we have our solution u with initial data u. Consider two neighborhoods of
u: a neighborhood D1 = {v ∈ C([0, T ]) : ‖v − u‖ ≤ 1} of size 1 and a neighborhood
D2 = {v ∈ C([0, T ]) : ‖v − u‖ ≤ 2} of size 2.

Suppose we know that v ∈ D2. Then v is defined on [0, T ], and stays in a compact set,
so the above argument applies. How do we know v says in D2? Suppose this is not true,
so there is a time T2 at which v exits D2; then v must exit D1 first.

By Grönwall’s inequality applied to T2, we have

|u(t)− v(t)|2 ≤ |u0 − v0|2 · e2LT2 , t ∈ [0, T2]

≤ ε2e2LT

Choosing ε sufficiently small,

≤ 1.

This implies that v does not exit D1, which is a contradiction; to exit D2, v must first exit
D1.

1More generally, we can prove this theorem with the same argument for f ′(t) ≤ h(t)f(t).
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Remark 1.1. Suppose we want to prove that if ε � 1, then ‖u − v‖ ≤ 1. We made a
bootstrap assumption ‖u − v‖ ≤ 2 and used this assumption to prove ‖u − v‖ ≤ 1.
This is called a bootstrap argument. These kind of bootstrap arguments are useful in
nonlinear PDEs, when you don’t even know whether a solution exists.

1.2 Linearizing an equation

Assume F ∈ C1 and suppose we have initial data u0
0. Take a one-parameter family of data

uh0 with h close to 0, so this is differentiable in h. Let u0
0 give a solution u0 and uh0 give a

solution uh. We can ask: how does uh depend on h? We know that if |uh0 − u0
0| . h, then

|uh − u0| . he2LT (with the notation A . B meaning A ≤ cB for some constant c).
Here is a formal computation: If u̇h = F (t, uh(x)), we want to compute an equation for

vh = d
dhu

h.

Apply d
dh to get

v̇h = DF (t, uh)vh, vh(0) =
d

dh
uh0 .

This is a linear equation for vh. It is called a linearized equation. This allows us to
pass from one solution to another solution nearby.

Does the derivative actually exist? Let’s compute:

d

dt
(uh − u0) = F (t, uh(T ))− F (t, u0(t))

Think of this as a Taylor expansion

= DF (t, u0(t))(uh(t)− u0(t)) + o(uh(t)− u0(t)︸ ︷︷ ︸
o(h)

)2.

Then

d

dt

uh − u0

h
= DF (t, u0(t))

uh − u0

h
+ o(h).

As h→ 0, uh−u0

h (0)→ v0. So in the limit, we get uh−u0

h → v0, which is the solution to the
linearized equation.
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1.3 Classifications of first order scalar PDEs

We will study first order scalar PDEs. In these equations, we have u : Rn → R, with

F (x, u, ∂u) = 0.

Evans’ textbook uses Du instead of ∂u, but we will use this notation for something else
later in the course.

Here is a classification by degree of difficulty:

• Linear: ∑
j

Aj(x)∂ju + B(x)u = f(x).

We can succinctly write this as a · ∂u + bu = f .

• Semilinear: ∑
j

Aj(x)∂ju + b(x, u) = 0.

Here, the nonlinearity is only in u, not in the derivatives.

• Quasilinear: ∑
j

Aj(x, u)∂ju + b(x, u) = 0.

• Fully nonlinear:
F (x, u, ∂u) = 0.

If we differentiate a fully nonlinear PDE, we get a quasilinear PDE, but we get a system.
For these equations, some things we know about scalar equations will not apply to systems.

What is our initial data? In Rn, we take a surface Σ and specify u|Σ = u0 on the
surface.

Definition 1.1. The equation plus our initial data is called an initial value problem or
a Cauchy problem.

Another way we can classify partial differential equations is by static equations (at fixed
time) and dynamic equations (evolution in time). This is a classification imposed less by
the equations themselves and more by the motivation of the PDEs.

Example 1.1. The equation
ut = F (x, u, ∂xu)

with u : Rt×Rx → R is a dynamic or evolution equation. The steady states are solutions
to the equation 0 = F (x, u, ∂xu).

4



1.4 First order linear scalar PDEs

We are looking at the equation ∑
j

Aj(x) · ∂ju = bu + f,

which we can write as
A · ∇u = bu + f,

where A · ∇u is the directional derivative of u in the direction A.
Let’s start with a simpler case, where A(x) = A does not depend on x. Then we can

look at lines which point in the direction at A: x = x0 + tA. Look at the function u along
these lines: u(x0 + tA).

d

dt
u(x0 + tA) = A∇u

= bu(x0 + tA) + f.

This is a linear ODE for u(x0 + tA).

If A is not constant, can we do the same thing? Instead of straight lines, we need curves.
In particular, we need curves which are tangent to A at each point.
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Do such curves exist? The ODE ẋ(t) = A(x(t)) has C1 solutions by ODE theory (where
A ∈ C1). So, given a point x, there is a unique curve starting from x that stays tangent
to A. This is called an integral curve of A. We can calculate

d

dt
u(x(t)) = ∇u · ẋ(t) = A∇u = bu(x(t)) + f,

which is an ODE for u. So if A is not constant, solving the PDE is like solving 2 ODEs: one
that gives integral curves and one that tracks the solution u along each integral curve. Next
time, we will look at what happens when we try to assign this initial data on a surface.
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